If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-0.2475=0
a = 1; b = 1; c = -0.2475;
Δ = b2-4ac
Δ = 12-4·1·(-0.2475)
Δ = 1.99
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{1.99}}{2*1}=\frac{-1-\sqrt{1.99}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{1.99}}{2*1}=\frac{-1+\sqrt{1.99}}{2} $
| 5x=19-8 | | 40+4v=12v | | x+15x=30 | | 0,4x+1,18=-3,1*(2-0,01x) | | 26/57=B49/5x | | 4.5q-4.8-5.6q=-0.1q-4.8 | | x^2+x-2.5225=0 | | 4f=96 | | -4.387x-33.41=55.83-22.49x | | x^2+x-1.01=0 | | 7x+(5x+2)+(4x+2)=180 | | 2x+43x=180 | | -79=7w=3(4w-1) | | 2x+75-x=180 | | 6x+(3x+3)+(2x+1)=180 | | 129/9=s | | 27x^-36x^2+12x=0 | | 4(x+1)=-32 | | 129÷9=s | | x-31(x-2)=6x-2 | | x-31(x-2)=6-2 | | 8=-8(-10+p) | | 9b+16=70 | | 6n-6=4n* | | x^2+x-1.095=0 | | 3+x1=-3 | | 7+k=49k | | 2n-7=8-3 | | x+13=5x-39 | | p/8-19=-26 | | 7m-3=-3 | | 7+x+18+x16=x+35 |